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atom positions in the ordered layers together with that 
of the superstructure of the 2 H  type. In the first ordered 
layer, the positions indicated by circles with the letter L 
are occupied by Ti atoms and the sites indicated by 
other circles are vacant. The second ordered layer 
consists of the positions indicated by squares for 
12R-TCx/~av/3ac,  4 H - M v ~ a v ~ b 2 c  and 4H- 
M v / 3 b v ~ a 3 c  and by triangles for 6 R - M V ~ a v ~ b 2 c ,  
and the sites with the letter M are occupied by Ti 
atoms. In this manner, the stacking sequences are 
represented by L M N P L M N P . . .  for 4H-M-v/~,av/~b2c 
and L M N P Q R L M N P Q R . . .  for 12R-TC'v /3a '~ac ,  
6R-Mv/3ax/~bEc and 4H-Mv/3bv/3a3c,  res" pectiv" ely. 

It has been revealed that short-range order exists in a 
crystal of 12R near Til.25S 2. The crystal as grown at 
873 K by a chemical-transport process has three- 
dimensional short-range order, i.e. 12R-(SRO)(SRO)- 
(SRO). A crystal annealed at 723 K has two- 
dimensional long-range order and one-dimensional 
short-range order, i.e. 12R-H2a2a(SRO). The supercell 
dimension suggests that the arrangement model in an 
ordered layer of 12R-H2a2a(SRO) is as follows: 
one quarter of the sites are occupied by Ti atoms 
and three quarters are regularly vacant. This arrange- 
ment has been known as an ordered layer in 2H- 
M2b2a2c (Bando et al., 1980), the composition of 
which is very similar to that of 12R-H2a2a(SRO).  

Once formed, polytypes such as 12R or 4H can exist 
over a large composition range (Saeki & Onoda, 
1982a,c). As described in this paper, each polytype has 
a tendency to generate the superstructure according to 
the composition. The arrangement model in an ordered 
layer is dependent on the composition of the specimen, 
while the periodicity along the c axis arises from the 
definite stacking sequence of the ordered layers. 

The authors thank Drs I. Kawada,  M. Ishii and H. 
Nozaki for valuable discussions. 
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Abstract 

Structures built from tetrahedral A X  4 groups sharing 
some or all of their X atoms may be classified 
according to the numbers of tetrahedra to which the X 
atoms belong. This survey is restricted to structures of 
composition A X  2 in which all A X  4 groups share their X 
atoms in the same way, and it is concerned with the 

0567-7408/83/010039-10501.50 

topology rather than the geometry of the structures. If 
v x is the number of X atoms of each A X  4 group 
common to x such groups (that is, x is the coordination 
number of X)  then ~ v x = 4 and Y Vx/X = 2. A study is 
made of the types of structure, finite, one-, two-, or 
three-dimensional, which are possible in the three 
classes, I (v 2 = 4), II (v I = 1, v 3 = 3), and III (v I = 1, 
v 2 = 1, v 4 = 2). 

© 1983 International Union of Crystallography 
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Introduction 

Since the number of structures that can be built from 
tetrahedral coordination groups A X  4 is indefinitely 
large we shall simplify the problem by introducing a 
number of restrictions, of which the first two may be 
described as topological and the others as geometrical: 
(i) All A X  4 groups share their X atoms in the same way 
with other similar groups, that is, they are topo- 
logically equivalent; differences in symmetry leading to 
crystallographically non-equivalent A atoms will be 
disregarded. (ii) The primary classification will be 
based on the coordination numbers of the X atoms, but 
only the values 1, 2, 3, 4, 6, and 8 will be considered. 
The values 5 and 7 are excluded on the grounds that 
they are unlikely to be found in realizable structures, 
and values greater than 8 are not consistent with (iii) 
and (iv). (iii) It must be possible to build a structure 
with regular tetrahedra. (iv) The distance between any 
pair of X atoms belonging to different tetrahedra must 
not be less than the distance X - X  within a tetrahedron, 
that is, the edge length. (v) The sharing of faces 
between tetrahedra is excluded because it leads to 
unreasonably small distances between A atoms. 

Table 1. Tetrahedral structures classified according to 
numbers (V x) o f  x-connected vertices 

Formula v~ v 2 v 3 v 4 v 6 v s Examples 

A X  4 4 XeO 4 
AvI" 7 3 1 CI207 
A X  3 2 2 SO 3 
Av~'5 1 3 P2Os 

2 2 - 

AX2 1 4 1 1  1 3 2 I _SiO2' HgI2' ( G a P ) S ' A 1 O C !  

AzX3 2 2 - 
1 3 Si2N20 

1 3 - 

A 3X4 4 Si3N 4 
2 2 - 

A X  4 ZnS, LiOH 
2 2 - 

1 3 - 

A 3X2 4 Be3N 2 
A2X 4 Li20 

In a tetrahedral structure A m X  . in which all A X  4 
groups share their X atoms in the same way let v x be 
the number of X atoms of each A X  4 group which are 
common to x such groups, that is, x is the coordination 
number of X. The value of x may, of course, be 
different for different X atoms of the same A X  4 group. 
Then Y v  x = 4 and Y. vx/x = n/m. Table 1 lists 
solutions of these equations for a number of simple 
formulae A m X,,  the portion enclosed by the heavy lines 
indicating the field covered in the present study. To 
derive the structures corresponding to the solutions of 
Table 1 we adopt a topological approach. If x is not 
greater than 2 for any X atom (as in class I) it is 
sufficient to consider the number of tetrahedra to which 
each is joined (by sharing X atoms) and to describe the 
structure in terms of the basic net of A atoms. 
However, if there are X atoms with values of x > 3 
these, together with the A atoms, must be included in 
the description of the topology of the structure, as in 
class II. 

First we remind the reader of the types of connected 
system which are possible if each point is connected to 
some number (p) of similarly connected points. The 
points in the basic connected systems so derived may 
be replaced by any object (e.g. a tetrahedron) capable 
of forming the appropriate number of connections. For 
p = 1 the only possible structure is a pair of connected 
points, and for p = 2 the only possibilities are rings or 
an infinite chain. However, for p _> 3 structures of all 
four major types can be formed, finite (e.g. polyhedra), 
or systems extending indefinitely in one, two, or three 
dimensions (1D, 2D, or 3D nets). Thus for three 
connections from each point the possible structures 
include all polyhedra having three edges meeting at 
each vertex [of which the simplest are three of the 
regular solids, tetrahedron (33), cube (43), and pen- 
tagonal dodecahedron (53), seven of the Archimedean 
solids (Table 2), and the infinite family of prisms 
(42.m)], the simple (1 D) ladder, planar 3-connected nets 
[of which the simplest is the tessellation of hexagons 
(63)], and 3D nets (of which the most symmetrical are 
the 'uniform' nets, 73 , 83 , 93 , 103 , and 123). An 
introduction to 3D nets is available (Wells, 1975) and 
also more detailed treatments (Wells, 1977, 1979). The 

3-connected 
Truncated tetrahedron 
Truncated cube 
Truncated octahedron 
Truncated cuboctahedron 
Truncated dodecahedron 
Truncated icosahedron 
Truncated icosidodecahedron 

Table 2. The Archimedean semi-regular polyhedra 

Symbol 

3.62 
3.82 
4.62 
4.6.8 
3.102 
5.62 
4.6.10 

Number 
of 

vertices 

4-connected 
12 Cuboctahedron 
24 Rhombicuboctahedron 
24 Icosidodecahedron 
48 Rhombicosidodecahedron 
60 5-connected 
60 Snub cube 

120 Snub dodecahedron 

Symbol 

3242 
3.43 
3252 
3.425 

344 
345 

Number 
of 

vertices 

12 
24 
30 
60 

24 
60 
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symbol n p of a polyhedron or net shows the numbers of 
points (n) in the shortest circuit (ring) and the 
superscript is the number of such circuits meeting at 
each point. For a 3-connected Archimedean solid, 
which has faces of more than one kind, the sum of the 
superscripts is 3, e.g. 4.62 for the truncated octa- 
hedron, and similarly for 2D or 3D nets containing 
circuits of more than one kind, as in the planar net 4.82 
or the 'Archimedean' 3D nets 6.82 and 6.102 (Wells, 
1979, p. 10). For a 4-connected polyhedron or 2D net 
the sum of the superscripts is 4 (e.g. the square planar 
net, 44), and for a 3D 4-connected net it is 6 (e.g. 
diamond, 66). 

In addition to the simplest p-connected systems 
noted above we shall refer later to certain more 
complex 1D and 2D structures. Just as portions of the 
simple chain of 2-connected points may be joined 
end-to-end to form rings so portions of the (3- 
connected) ladder form prisms and portions of the 
4-connected ribbon form antiprisms: 

A A -A 

I I I 
• A .A - . A  

• A ..A : 

--+ prisms 

/ ~ A /  \ A / /  \ A  L tip --+ an risms 
f 

! t 

Strips cut from 2D nets may be wrapped around a 
cylinder and joined together to form infinite 1D 
structures (cylindrical or tubular chains), as shown in 
Fig. 1 for the simplest 4-connected planar net. In turn, 
portions of such tubular chains could be joined end to 
end to form torus-like structures of triangular, square, 
etc. cross section. In the sequence 

layer (p > 3) ~ tubular chain --+ torus 

2D ID finite 

the connectedness (p) of each point remains the same. 
Another possibility is the linking of two p-connected 
layers by an additional link from each point on the 

I i : - - q  
I i 

' ' AB AC o t 
r ' N  ~ , ~. . . ._._[ 

I 
A B C 

Fig. 1. Formation of tubular chains from strips AB, AC, and so on 
of the planar 4 4 net. 

same side o f  the layer to form a double layer in which 
each point becomes (p + 1)-connected. An example is 
the double-layer anion in Ca(A12Si2Oa). We see that the 
topologically possible structures for a 4-connected 
subunit such as a tetrahedral A X  4 group sharing each X 
atom with one other such group include not only the 
well-known simple layer of red HgI 2 and the 3D 
frameworks of silica and aluminosilicate structures but 
also finite structures (polyhedral or torus-like), tubular 
chains, and double layers. 

We now consider in turn the three solutions of Table 
1 for structures of composition A X  2, namely, 

classl:  v 2 = 4  

classl l :  v ~ = l , v  3 = 3  

class III: v~ = I, v 2 = I, v 4 = 2. 

S t r u c t u r e s  o f  c l a s s  h 1) 2 ---- 4 

The 2-coordination of each X atom can be realized by 
(a) the sharing of each vertex with a different 

tetrahedron, 
(b) the sharing of one edge and two vertices, or 
(c) the sharing of two edges which have no common 

vertex. 
Since all X atoms in structures of this class are 

2-connected and since 2-connected points may be 
eliminated from a topological diagram the bond 
diagrams 

I /  
I A--  A 

/ " 
X ' \AX" --  / \X / \ X  \A 

/l i \ (a) (b) (c) 

may be simplified to 

l /  / 

---~ ]A \A  / --  NA = A / A = = A = A = A = . 

/ \ A t  / 
/ I  I \ \ 

(a) (b) (c) 

The gross topology of a structure (whether a finite, 1D, 
2D, or 3D system) may be described in terms of the 
number of tetrahedra to which each is connected. This 
is the number of A atoms to which each is connected, 
disregarding the difference between double and single 
links, that is, between edge and vertex sharing. The 
required structures are accordingly based on 4-, 3-, or 
2-connected nets of A atoms in (a), (b), and (c) 
respectively. We need not consider (c) further since it 
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leads only to the linear chain of BeC12 or SiS2 or to 
improbably large (unknown) rings formed from por- 
tions of such a chain. 

Structures o f  class I(a) 

We have noted in the Introduction that structures of 
all four main types (finite, 1D, 2D, and 3D) are 
topologically possible i fAX 4 groups share each X atom 
with one other similar group. However, polyhedral 
complexes, in which the A atoms would be situated at 
the vertices of 4-connected polyhedra, cannot be built 
from tetrahedral A X  4 groups, nor can the torus-like 
complexes noted above. [The Pt6CI~2 molecule is an 
example of a polymeric (AX2) n complex based on the 
octahedron, but it is built from planar A X  4 groups.]. 
Three types of structure are therefore possible in class 
I(a). 

1D structures: Tubular chains may be formed from 
strips of planar 4-connected nets of various widths, as 
shown in Fig. 1 for the 44 net. The end-on views of 
these chains show that they consist of vertex-sharing 
rings stacked above one another. 

2D structures: The layer structure of red HgI2 is 
based on the simplest planar 4-connected net (44), and 
the double-layer anion in Ca(AI2Si20 8) results from 
joining together two layers based on the simplest planar 
3:connected net (63). 

3D structures: The vertex-sharing 3D A X  2 struc- 
tures are based on the numerous 3D 4-connected nets, 
and range from cristobalite-like structures based on the 
simplest of these nets (the diamond net, 66 ) to the 
complex frameworks of aluminosilicates such as 
felspars and zeolites. 

Structures of all the above types are also possible if 
the simple A X  4 groups are replaced by 'super-tetra- 
hedral' groups A4X~o formed from four A X  4 tetrahedra 
joined as in the P40~0 molecule or the Si4S~o ion. Such 
groups may be joined by sharing each of the outermost 
vertices with one other similar group to form struc- 
tures of class I(a), when the composition becomes A 4X s 
(AX2). Examples are the layer structure of orange HgI 2 
and the 3D structure of ZnI2. 

Structures o f  class I(b) 

Structures in which each tetrahedron is joined to 
three others by sharing one edge and two vertices 
()A =) are of all four major types, that is, the A atoms 
are situated at the vertices of 3-connected polyhedra or 
at the nodes of 3-connected ID, 2D, or 3D nets. 

Polyhedral structures: The most symmetrical poly- 
hedral structures are based on certain of the 3- 
connected regular and semi-regular (Archimedean) 
solids or on prisms. Those based on the tetrahedron or 
cube are not acceptable because they have very short 
interior X - X  distances; the most symmetrical form of 

the pentagonal dodecahedral complex is illustrated in 
Fig. 2. We may also rule out the A ~2X24 structure based 
on the truncated tetrahedron because of short interior 
X - X  distances, but structures can be built which are 
based on the other six 3-connected Archimedean solids 
(Table 2). There is not a unique structure corre- 
sponding to each of these polyhedra. Isomerism is 
possible in this family of structures because an edge of 
the polyhedron outlined by the A atoms may represent 
either a shared vertex ( - )  or a shared edge (=), subject 
to the condition that the bond arrangement at each 
vertex is ) A = .  For example, in the most symmetrical 
isomer of the truncated octahedral complex all four 
edges of each square face correspond to vertex sharing 
and all hexagonal faces are of the same kind, with 
alternate vertex and edge sharing, as shown in (a). In 
the less-symmetrical cubic isomer (b) there are hex- 
agonal faces of two kinds, 

and 

m3m isomer 

O 3,3m isomer, 

and other less-symmetrical isomers include five with 
trigonal symmetry and possibly others of lower 
symmetry. There are at least two isomers of each of the 
other five structures of Table 3 based on Archimedean 
solids and of the pentagonal dodecahedral complex, but 
only the most symmetrical isomers are illustrated (Figs. 

. r  

Fig. 2. The A20X40 structure based on the pentagonal dodeca- 
hedron. 

Table 3. Polyhedral structures o f  class I(b): v 2 = 4 

3-connected 
polyhedron 4-connected polyhedron 
defined by defined by inner (or outer) 
A atoms Formula shell of X atoms Fig. 

53 A 2oX40 335 2 
3 18 2 3 / A 2,X4s 3242 4.62 4 
4.6.8 A 4sA"96 3.43 5 

5.623"102 } A6oXI20 3252 67 

4.6.10 A 120X240 3.425 8 
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3-8). This isomerism is reminiscent of that of the 
octahedral Keggin complexes A ~xX~0. 

Since these polyhedral complexes, certainly the 
larger ones, are unlikely to form unless atoms of some 
kind occupy the central void, we include in Table 3 the 
shape of the polyhedral group formed by the inner X 
atoms of each complex. The X atoms of each complex 
fall into three groups. One half lie on links of the 
polyhedral shell, these being the shared vertices, and 
the remainder, in equal numbers, lie at the ends of 
shared edges, within or outside this shell. The isomer- 
ism of these complexes has not been studied in detail, 
but it has been noted that in the isomers of type (b) of 
4.6 x, 4.6.8, and 4.6.10 the polyhedra defined by the 
inner X atoms are respectively 3.6 2, 3.8 2, and 3.10 x. 

1D and prismatic structures: There is an indefinitely 
large number of isomers of the chain formed from 
tetrahedra each sharing two vertices and one edge; the 

k- 
Fig. 6. The /16oX12 o structure based on the truncated dodeca- 

hedron. 

.,'r~.. -" .,5, ~ ~1~ ~ . ~  
.r"._,.,- ~ t k- ~ , "  ~ ~"  , ' . "  

. t~  "~, ~ "  ~ 7  ~,a..:,-,, ~-~,~ 

'~, ~,',~ ~ ~,,.a x-~t;  ~ -  ,,a 

l "' ~ a ~ .  : ~  ~ .  f" ; , . ! ~  ~ ~ ~ Fig. 7. The A~Xt, 0 structure based on the truncated icosahedron. 

Fig. 3. The A~4X4, structure based on the truncated cube. /I ~"'~.~5-"~'- ~ / ~  ~ 1 ~  ~ J 0"" ~ ' " ~ " ~ " ~ L ~  ~ " ~ ~ ,  > 

~ ] ' - - J - "  | , - " ~ ,  %aib,~' - ' ~  t'~', . . .~  .al~Afl.~" " - ~  Fig. 8. The structure based the truncated icosi- 
dodecahedron. 

t  ,,o o, tion. 
/ of the chain (d) are illustrated in Fig. 9. In Fig. 9(a) the 

" ' , i  " - "  ' * "  .,,t' - , ' - , ' - , ' -  - " = , ' - , ' =  - , ' = , , - , ' =  
r:ig. 4. " rheas ,x , ,  structure b a ~  on the truncated octahedron. II II II I I I I I I 

- - A - - A - - A - -  - - A = A - - A  = = A - - A = A - -  

Fig. 5. The A4sX96 structure based on the truncated cubocta- 
hedron. 

(d) (e) (f) 

shared edges are perpendicular to the plane of the 
paper; in Fig. 9(b) one face of each tetrahedron is 
parallel to that plane. The latter projection shows that 
the X atoms of this chain are in the positions of closest 
packing. Such chains could therefore be packed side by 
side to form a pair of layers of close-packed X atoms, 
between which A atoms occupy one half of the 
tetrahedral interstices. The circles in Fig. 9(b) represent 
the X atoms of one close-packed layer. 

We now consider prismatic structures formed from 
portions of chains joined end to end. Those formed 



44 TETRAHEDRAL A X  2 STRUCTURES 

(a) 

(b) 
Fig. 9. Two projections of the chain (d) (see text). 

from the chain (d) are not likely to form because the 
distance between X atoms belonging to different shared 
edges is equal to the tetrahedral edge length in the fully 
extended chain, and would be smaller in a prismatic 
structure. However, prismatic structures (A+Xs)  . can 
be formed from the chains (e) and ( f )  if n > 6; in 
structures formed from.smaller portions of these chains 
there would be short interior X - X  distances. Fig. 10 
shows the A 24X48 structure formed from the chain (e). 

2 D  s t ruc tures :  Layers are based on 3-connected nets 
of A atoms, and we consider first the simplest 
3-connected 2D net, 63. As in the isomers of the 
polyhedral and chain structures different sequences of 
vertex and edge-sharing tetrahedra in a ring are 
possible. The two arrangements in which the sequence 
is the same in all rings are: 

(i) (ii) 

The corresponding layers built from tetrahedra are 
shown in Fig. 11, where the shared edges are 
perpendicular to the plane of the layer. Various 
configurations of these layers are possible, one of 

O) (ii) 

special interest being the most compact form of the 
layer of Fig. 1 l(i). This is illustrated in Fig. 12, the 
right-hand portion of which shows two rings of six 
tetrahedra and the left-hand portion indicates the basic 
topology of the layer. The X atoms form two parallel 
close-packed layers but only those of the lower layer 
are shown (larger open circles), and the A atoms at the 
two levels are indicated as small open and filled circles. 
This type of layer may be described as the tetrahedral 
analogue of the octahedral A X  2 layer (of CdI2, CdCI2, 
and polytypes), that is, a layer in which one half of the 
tetrahedral interstices are occupied by A atoms between 
a pair of layers of close-packed X atoms• No example is 
known of an A X  2 compound with a structure of this 
kind, but it was noticed that in GAPS+ (Buck & 
C arpentier, 1973) tetrahedral groups (alternately GaS 4 
and PS+) each share an edge and two vertices to form 
such a layer. The Ga and P atoms together occupy one 
half of the tetrahedral interstices between alternate 
pairs of layers of close-packed S atoms. However, the 
net of Ga and P atoms on which the layer is based is 
not the simplest planar 3-connected net, but the 4.82 net 
(Fig. 13). It is therefore of interest to discover whether 
there are similar layers with close-packed X atoms 
based on the other two semi-regular 2D 3-connected 
nets, namely 3.122 and 4.6.12. It appears that the only 
two A X  2 structures of this class in which the X atoms 

fo rm two complete close-packed layers are those based 
on 63 and 4.82; in the layers based on the 3.122 and 

Fig. 11. The two layers corresponding to the diagrams (i) and (ii) in 
the text. The A atoms of only one ring are shown, as small black 
circles. The small open circles represent X atoms. 

.r --- +. v 

++ .,!? 

'+,~. ~r~' ~ ~ ~ +,__~l Fig. 12. The A X  2 layer of class I(b) based on the 6' net. At the left 
Fig. 10. Prismatic structure A2,X ~ formed from the chain (e) (see the heavy full lines and the broken lines connect A atoms and 

text), outline the basic net on which the layer is based. 
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Fig. 13. The AX 2 layer of class I(b) based on the 4.8 2 net of A 
atoms. 

. . . . .  ' """ " C" 

:C 

"C: 

Fig. 14. TheAX 2 layer of class I(b) based on the 3.12 2 net. 

..q.o 

Fig. 15. The AX 2 layer of class l(b) based on the 4.6.12 net. 

4.6.12 nets (Figs. 14 and 15) the X atoms occupy 
respectively ~ and ~ of the close-packed positions. 

3 D  structures:  No systematic study has been made 
of structures based on 3D 3-connected nets. They are 
presumably numerous, the most symmetrical being 
based on the n 3 nets ('uniform' nets of Wells, 1977) or 
the 'Archimedean' nets (Wells, 1979). 

or 
(d) three edges of each tetrahedron shared; for the 

single example see Fig. 24(a). 
In all structures of this class each A atom is 

connected to three shared X atoms and each X to three 
A, and therefore the possible structures are based on 
3-connected nets in which A and X atoms alternate. 
Accordingly all polygonal circuits in the nets must have 
even numbers of links (edges). 

Struc tures  o f  class II(a) 

Here the smallest circuit is a ring of six atoms 
(alternately A and X) since a ring of 2A + 2X atoms 
implies edge sharing. This condition excludes all 
3-connected polyhedra and all 2D 3-connected nets 
other than 6 a. 

1D a n d  2 D  structures:  The net 63 represents the 
topology of the layer of Fig. 16(a), from which the 
unshared X atoms are omitted. Since the unshared 
vertex of each tetrahedron may lie either above or 
below the plane of the paper an indefinitely large 
number of configurations of this layer is possible, one 
of which represents the structure of AIOCl (and 
GaOCl). The configuration with all unshared vertices 
on the same side of the plane of the shared X atoms is 
our fourth example of the filling of one-half of the 
tetrahedral interstices between a pair of close-packed 
layers. Strips of this layer may be wrapped around a 
cylinder to form tubular 1D structures of which two 
examples are shown in Fig. 17. 

3D structures:  These structures would be based on 
3-connected nets in which A and X atoms alternate and 

3 

(a) (b) (c) 

Fig. 16. The sharing of vertices and/or edges in the three families 
(a)--(c) of class II. The broken lines indicate the nets formed by 
the 3-connected A atoms (black circles) and 3-connected X 
atoms (open circles); the unshared X atoms are omitted. 

S t r u e t u r e s  o f e l a s s  l h  v t - -  1, v 3 ---- 3 

The sharing of each of three vertices of every 
tetrahedron with two other tetrahedra can be realized in 
the following ways: 

(a) vertices only shared (Fig. 16a), 
(b) one edge of each tetrahedron shared (Fig. 16b), 
(c) two edges of each tetrahedron shared (Fig. 16c), Fig. 17. Two tubular chains of class II(a). 
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all circuits have even numbers of links, this number 
being greater than six. The simplest 3-connected 3D 
nets of this kind are uniform nets 8 a, 10 ~, and 12 a. It 
has not been ascertained whether any of these 
structures are geometrically possible, that is whether 
they can be constructed with reasonably regular 
tetrahedra and without any unacceptably short dis- 
tances between X atoms of different tetrahedra. 

,-tP'x" 2.,," 
].r. .... ~ . . a  ,,¢, 't~ 

Structures of  class II(b) 

Structures of all four major types are possible, 
polyhedral, 1D, 2D, and 3D. 

Polyhedral structures: The polyhedra defined by the 
A and the shared X atoms taken together must be 
3-connected and must have 4-gon faces. The struc- 
tures derived from the cube and from prisms do not 
belong to class II(b), as noted later, but the relevant 
Archimedean solids 4.62, 4.6.8, and 4.6.10 produce the 
structures of Figs. 18, 19, and 20 and Table 4. The 
models illustrated in these figures and other stereo-pairs 
do not show the A atoms, for the connectors represent 
shared X atoms. For this reason the polyhedra of this 
group are perhaps more easily visualized in terms of the 
polyhedral shells outlined by the shared X atoms. These 
polyhedral shells must have pairs of edge-sharing 
triangular faces and five edges meeting at each vertex 
(see Fig. 16b). The most symmetrical are therefore the 
icosahedron (35), snub cube (34.4), and snub dodeca- 
hedron (34.5). In the icosahedral structure (Fig. 18) 
tetrahedra are placed on 12 of the 20 faces of a regular 
icosahedron, in the second (Fig. 19) on 24 of the 32 
triangular faces of a snub cube, and in the third (Fig. 
20) on 60 of the 80 faces of a snub dodecahedron. 

I D and 2D structures: Because all 2D nets of this 
family must contain 4-gons the most symmetrical ones 
are the semi-regular nets 4.82 and 4.6.12. The A X  2 

Fig. 20. The snub dodecahedral complex A soX~20 of class II(b). 

Table 4. Polyhedral structures o f  class II(b): v~ = 1, 
V 3 = 3  

Polyhedron 
defined by 

the A and the Polyhedron defined 
shared X atoms by the shared X atoms 
(3-connected) Formula (5-connected) Fig. 

4.62 A lrg24 34.3 18 
4.6.8 A 2e/(4s 34.4 19 
4.6.10 A6oX120 34.5 20 

layers based on these nets are illustrated in Figs. 21 and 
22. In the layer of Fig. 21 we have shown the unshared 
X atoms of each edge-sharing pair of tetrahedra lying 
on opposite sides of the plane of the layer, because if 
they lie on the same side there are very short X - X  
distances between these atoms (0.58 of the tetra- 
hedron edge length). Tubular chains may be built from 
strips of this net. In the portion of the net shown in Fig. 
21 there are four vertical strings of tetrahedra. In the 

"A 

o X  

Fig. 21. A X  2 layer of class lI(b) based on the 4.82 net, a portion of 
which is shown at the bottom left. Full lines and light broken lines 

~ . . ,  . ~ . .  , ~ ~ ~  represent tetrahedr°n edges" The heavier br°ken lines (b°tt°m 
left) connect A atoms (small black circles) and 3-connected X 

r ~  f ~ f ~ atoms (open circles) which form the underlying net. 

Fig. 18. The icosahedral complex A 12X2+ of class If(b). , '~  / ~ z ~  

Fig. 22. A X  2 layer of class lI(b) based on the 4.6.12 net, a portion 
Fig. 19. The snub cube complex A 2 4 X  a of class II(b). of which is shown at the bottom left (heavy broken lines). 



A. F. WELLS 47 

• ~ ;  , a ~  ~ , 

, \ 
0%. , 

, 

Fig. 23. Tubular chain of class II(b). 

tubular chain formed from a strip of this width such 
short X - X  distances cannot be avoided, but they do not 
occur in chains built from wider strips if, for example, 
the unshared X atoms of both tetrahedra of alternate 
edge-sharing pairs lie on the outer surface of the chain, 
as in Fig. 23. This chain is built from a strip of the layer 
six 'strings' in width, and the innermost (unshared)X 
atoms lie at the vertices of a column of face-sharing 
octahedra. Tubular chains may also be formed from 
the 4.6.12 net, but their detailed geometry has not been 
studied. 

3D structures: These must be based on 3-connected 
nets in which A and X atoms alternate, and the nets 
must contain 4-gon circuits (of two A and two X 
atoms). The known nets of this type are six of the 
'Archimedean' nets (Wells, 1979, p. 10), namely, 4.6.8, 
4.8.10 (two), 4.125 (two), and 4.145 . The geometry of 
tetrahedral AX 2 structures based on these nets remains 
to be studied. 

Structures of class II(c) 

Only cyclic and chain structures are possible, and it 
is convenient to deal with the latter first, since the cyclic 
structures are built from portions of the chain struc- 
ture. If the chain of Fig. 16(c) is broken at any point 
there are two ways of choosing a second edge which 
has a vertex in common with the edge already shared. 
There is therefore an indefinitely large number of 
configurations of this chain. In the fully extended 
configuration of Fig. 16(c) all the shared X atoms lie in 
the plane of the paper; the fourth vertex of each 
tetrahedron could therefore lie to one side or the other 
of this plane. If any pair of unshared X atoms of 
adjacent tetrahedra lie on the same side of this plane 
there are unacceptably short X - X  distances. However, 
portions of the chain with all unshared X atoms lying 
on the same side and consisting of even numbers of 
tetrahedra may be joined end-to-end to form cyclic 
structures (AX2)2,. In these structures the A and shared 
X atoms define prisms. The first member of this family, 
n = 2, belongs to class II(d), for each tetrahedron 

(b) ( c )  

Fig. 24. Three finite complexes: (a) A4X . of class II(d); (b) and (c) 
A~XI2 and A z2X24 of class II(c). 

(a) (b) 

Fig. 25. Projections of the cyclic complexes h6Xlz and AI2X2, of 
Fig. 24(b) and (c). 

shares three edges (Fig. 24a). It consists of a group of 
four tetrahedra enclosing a central tetrahedral hole, and 
the four A and the four shared X atoms are situated at 
alternate vertices of a distorted cube. Higher members 
of the family belong to class II(c). The structures with 
n = 3 and 6, with compositions A~X~2 and A~2X2, 
respectively, are illustrated in Figs. 24(b) and (c) and 
also in Fig. 25, where the heavier broken lines indicate 
the shared tetrahedron edges. The topological represen- 
tations of these complexes, the 3-connected systems of 
A and shared X atoms, are the hexagonal and 
dodecagonal prisms respectively. Since the distance 
between unshared X atoms of adjacent tetrahedra 
approaches the value for the linear chain as n increases 
there is an upper limit to the value of n (around 18-20). 
No cyclic structures can be formed from the con- 
figuration of the chain of Fig. 16(c) which has unshared 
X atoms alternately on opposite sides of the plane of 
the shared X atoms because of short X - X  distances. 

S t r u c t u r e s  o f  c l a s s  l l h  v t ---- I ,  v 2 ---- I ,  v 4 --- 2 

In structures of this class each AX, tetrahedron shares 
one X with one other tetrahedron (v 2 = 1) and two with 
three other tetrahedra (v4 = 2). This can be achieved in 
the following ways: 

(a) vertices only shared, or 
(b) one edge shared, which can be either the edge 

between two 4-connected X atoms (b~) or the edge 
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a 
bl 

b2 

Fig. 26. Examples of planar (3,4)-connected nets containing pairs 
of adjacent 3-connected points in which c 3 = 2c 4 (see text). The 
small black circles represent A atoms and the open circles 
4-connected X atoms; the unshared and 2-connected X atoms are 
omitted. 

between the 2-connected X atom and one of the 
4-connected X atoms (b2). 

I /  
x -  

\ /  
A 

I 
x 
I 

,4 
/ \ 

- - X  
/ I  ; ~ \  

(a) 

In the accompanying sketches X represents a 
4-connected X atom, x a 2-connected X atom, and 
unshared X atoms are omitted. The topological 
diagrams may be further simplified by replacing A - x - A  
by A - A .  Accordingly these structures are represented 
by (3,4)-connected nets containing pairs of adjacent A 
atoms and also in b I four-membered rings or in b 2 
three-membered rings. (The dotted lines in bl and b 2 
indicate shared edges of A X  4 groups.) In all such nets 
each A is connected to two X (and also through x to 
one A) and each X to four A, and therefore the number 
(e 3) of 3-connected points (A atoms) is equal to twice 
the number (e4) of 4-connected points (X atoms). [On 
replacing the 1- and 2-connected X atoms, which are 
omitted from the (3,4)-connected nets, the ratio A :X 
becomes 1: 2.] 

No examples appear to be known of structures of 
this class, which have not been studied in detail. It 
seems unlikely that finite or 1D structures are possible 
for tetrahedral coordination of A, but 2D and/or 3D 
structures may well be possible. Fig. 26 shows a planar 
net of each type with the following numbers of points in 
their repeat units: (a) c a = 8, c4 = 4, (bl) c3 = 2, c4 = 1, 
and (b2) c a = 4, c 4 = 2, on which structures of this class 
might be based. Very few 3D (3,4)-connected nets 
having c 3 = 2C 4 are known (Wells, 1977, p. 92; 1979, 
pp. 55, 58), and we have not ascertained whether any 
tetrahedral A X  2 structures can be constructed. 

\1 \ y /  \X/ 
. /i\. 

. . . . .  

_ X  
/ I  

(bl) (b2) 
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